• Users Online: 485
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 7  |  Issue : 6  |  Page : 247-253

Effect of partial depletion of CD25+ T cells on neurological deficit and tissue damage in acute cerebral ischemia rat models


1 Grupo Inmunovirologia; Bacterias & Cáncer, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
2 Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Uniremington, Calle 51 No. 51-27, Medellín, Colombia
3 Grupo de Inmunología Celular e Inmunogenética (GICIG). Instituto de Investigaciones Médicas, Facultad de Medicina; Unidad de Citometría, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
4 Grupo de Neurociencias de Antioquia, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
5 Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia

Correspondence Address:
Ana L Rodriguez-Perea
Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Bacterias & Cáncer, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín
Colombia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2221-6189.248029

Get Permissions

Objective: To evaluate the role of regulatory T cells (Tregs) at late stages of stroke. Methods: Anti-CD25 antibody (or PBS as a control) was injected to reduce the pool of Tregs in Wistar rats; then, ischemia was induced transiently by middle cerebral artery occlusion during 60 min and reperfusion was allowed for 7 d. Then, Treg frequency was analyzed in peripheral blood, spleen and lymph nodes. Neurological score (0-6) and infarct volume were also determined. Results: Nine days after injection, the CD4+CD25+ T cells were reduced by 70.4%, 44.8% and 57.9% in peripheral blood, spleen and lymph nodes, respectively compared to PBS-treated rats. In contrast, the reduction of CD4+FOXP3+ T cells was lower in the same compartments (38.6%, 12.5%, and 29.5%, respectively). The strongest reduction of CD25+CD4+ T cells was observed in those FOXP3-negative cells in blood, spleen and lymph nodes (77.8%, 52.8%, and 60.7%, respectively), most likely corresponding to activated T cells. Anti-CD25-treated transient middle cerebral artery occlusion rats had a lower neurological deficit and did not develop tissue damage compared with PBS-treated animals. Conclusions: These findings suggest that treatment with anti-CD25 in our model preferentially reduce the T cell population with an activated phenotype, rather than the Treg population, leading to neuroprotection by suppressing the pathogenic response of effector T cells.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1691    
    Printed139    
    Emailed0    
    PDF Downloaded227    
    Comments [Add]    

Recommend this journal